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Comments on Some Aspects of Boltzmann H Theorem 
Using Reversible Molecular Dynamics 
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We calculate the Boltzmann H function for a repulsive Lennard-Jones fluid 
using Levesque and Verlet's reversible molecular dynamics algorithm. We find, 
as predicted by Jaynes, that for certain initial states, H increases as a function 
of time. We also discuss the Grad limit within such a simulation. 
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1. I N T R O D U C T I O N  

In a recent article, Levesque and Verlet ~ introduced a time-symmetrical 
integer arithmetic algorithm for molecular dynamics (MD) simulations of 
classical fluids. This algorithm makes use of integer variables instead of 
real, floating point, variables, and it was shown that since there are no 
round-off errors, it preserves the time-reversal symmetry of Newton's equa- 
tions. This remarkable feature of the simulations makes them ideal, not 
only to improve on previous MD calculations, but also to explore 
fundamental issues such as the origin of irreversible macroscopic behavior. 
Levesque and Verlet exemplified this behavior by studying a function 
similar to Boltzmann H function. Their calculation, in a very illuminating 
way, illustrates the tipicaUity of time-asymmetric behavior for systems with 
many particles, despite the fact that their microscopic dynamics is time- 
reversible. The function calculated by Levesque and Verlet, however, hides 
the fact that in some cases the corresponding Boltzmann H function 
increases instead of decreasing as a function of time. This last result does 
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not imply that the H Theorem ~2) is violated since Boltzmann equation 
is not obeyed within the conditions considered in those cases. That 
Boltzmann equation is not satisfied follows essentially from the fact that 
the potential interaction energy cannot be neglected. The result that in such 
cases H may increase was first indicated by Jaynes. ~3) 

In this article we briefly review Jaynes' argument and show that H(t) 
indeed increases for a set of initial conditions commonly used in numerical 
simulations. We shall also show that for other type of initial states, very far 
from equilibrium, H(t) decreases. Since it is known that Boltzmann equa- 
tion, as well as the H Theorem, are strictly valid in the so-called Grad limit 
only, ~4) we also want to use this article to explore the feasibility of reaching 
this limit in a practical and useful way. We point out, as we shall show 
below, that since numerical simulations are usually performed very far from 
this limiting situation, it is not surprising that strong departures are observed. 

Let us c6nsider a monatomic classical fluid of N particles in a volume 
V and with total energy ~. For simplicity, we assume pairwise interactions 
through a potential u(16-~.[). Let f(~', f, t)d3rd3u be the number of par- 
ticles,-at time t, with velocities between ~" and ~'+ d3v, and with positions 
between F and f'+ d3r. We shall use the normalization, 

f d3r f d3vf(~, F, t ) = N  (1) 

Boltzmann H-function is given by 

H(t) = f d3r f d3v f(~, F, t)In f(~', f', t) (2) 

and Boltzmann H Theorem states that 

dH(t) 
~ ~ < 0  (3) 

dt 

/ff(ff, F, t) obeys Boltzmann equation, t2) 
Jaynes' result that the H Theorem can be "violated" in real gases is 

clearly summarized in the abstract of his article: t3) ... (a) Any monatomic 
system for which the equilibrium potential energy exceeds the minimum 
possible value possesses a continuum of initial states for which the approach 
to equilibrium takes place through an increase, rather than a decrease, in 
Boltzmann's H. (b) I f  the initial distribution of particles is spatially 
homogeneous and Maxwellian, the approach to equilibrium will take place 
through an increase (decrease) in Boltzmann H, according as the initial 
potential energy is less (greater) than the equilibrium value .... Of course, the 
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apparent violation only indicates that f(~', f, t) does not obey Boltzmann 
equation since the potential energy is not negligible (in other words, H can- 
not be identified with the entropy in those systems). Nevertheless, from the 
practical point of view of applying Boltzmann equation to actual situa- 
tions, Jaynes' argument is very important to take into account. 

The situation we shall address is (b) of the above paragraph: Consider 
a system of N particles pairwise interacting through a positive repulsive 
potential. The system is in an initial non-equilibrium state, spatially 
homogeneous with density p = N/V,  zero potential energy (i.e. none of the 
particles undergoing a collision) and with the velocities distributed with a 
Maxwellian distribution at "temperature" To, namely, 

m )',' 
f(~, r, O)=-~ 2zrkTo 

e -mv2/2kT~ (4) 

When the system equilibrates, the velocities will be distributed /l la 
Maxwell, as in Eq. (4), but with an equilibrium temperature T different 
from T0"At the same time, the average potential will be different from zero 
and positive and, therefore, the equilibrium temperature T will be smaller 
than To. For the initial state, Boltzmann H function, cf. Eq. (2), yields, 

3 ( N ) 3  (2nmkTO) H(t = 0) = - ~ N + N  In - ~ N l n  (5) 

and an analogous expression for the function in equilibrium H(t ~ oo) with 
To replaced by T. Thus, these H functions are related as 

H( t=O)  < H ( t  ~ oo) (6) 

That is, H must increase for this particular initial condition. (5) This is the 
situation we shall discuss below through MD simulations. 

2. NUMERICAL S IMULATIONS 

In this section we shall exemplify the above results by means of a 
series of MD simulations (6) of a fluid interacting through the repulsive part 
of a Lennard-Jones potential, (1) 

f4  e [ (~)12 (~/j) 6] - -  + 8 ,  

u(ro. ) = 
O, 

ro. <~ 21/6tr 

ru >~ 2 ~/6tr 
(7) 

822/89/3-4-17 
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where ru=  [Fi-rj-I. For this intermolecular potential, the average potential 
energy will always be positive. Accordingly, the total conserved energy is 
also positive being the sum of the (positive) average kinetic energy plus the 
(positive) average potential energy. 

As mentioned in the previous section, the initial condition corresponds 
to a state with zero potential energy, uniform density, and with the 
velocities Maxwell distributed. Clearly, the most delicate aspect of this 
state, from the point of view of a numerical simulation of a finite system, 
is its homogeneity. However, from a coarse-grained point of view, a state 
with uniform density may be considered as one having (approximately) the 
same number of particles in all subvolumes of a given size. Thus, for an 
initial state of the latter type, we assume that 

f(7, if, O) d3r d3v ~ f(v, O) d3r d3v (8) 

where we have already taken into account the isotropy in the velocities, 
v=  ]b'l. Clearly, if the initial state obeys these conditions, we expect them 
to hold for any subsequent time. Furthermore, we know that the equi- 
librium state of the system must be of the form of Eq. (8). 

Regarding the actual calculations, we obtain H at any time, by sorting 
the number of particles with magnitude of their velocities lying between 
U i and v~+dr. The interval ,dr is obtained as dv=4vo/M, with v0 the 
rms-deviation of the initial Maxwell distribution, and M the number of 
intervals, tipically M = 4 0 .  We used v ~ = ( i - 0 . 5 ) d r .  Now, by calling g~(t) 
the number of particles whose magnitude of velocities are in the ith inter- 
val, we have 

M 

y' g,(t) = N (9) 
i = 1  

Hence, using Eqs. (1), (8), and (9), it follows that 

gi(t) 
f(f', ~, t)~, 4nVvEi dv (10) 

so that, Boltzmann H function, cf. Eq. (2), is calculated as 

H(t) ~ ~ g,(t) In 4s zJv 
i = l  

The initial state that we actually use is obtained by placing the particles 
on the sites of an fcc lattice with their velocities Maxwell distributed. ~ 
Although one may object that such an initial state is of uniform density, we 
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argue that in a coarse-grained sense it is. Moreover, it can be considered 
as just one member of an ensemble of states all with zero potential energy 
and with the same velocity distribution. The average of the latter ensemble 
will yield a state with uniform density. The following results address this 
point. 

In Fig. 1 we plot H vs t for a system of N - 4 0 0 0  particles interacting 
via the repulsive Lennard-Jones potential, Eq. (7), with density p = 0 . 4 5  
and with a MD time-step per iteration h=0.0046188,  in reduced units. (7) 
The different cases correspond to different initial states, all having the same 
Maxwell velocity distribution, zero potential energy, but with positions of 
the particles on an fee lattice, or with the particles randomly being moved 
away from the fee lattice. With the assumption of Eq. (8) all these states 
have exactly the same value of H(t = 0 ) =  -23916 ,  as shown in Fig. 1, and 
increasingly reach the same equilibrium value of H(t ~ o o ) ~ - 2 3 0 9 6 ,  
within fluctuations due to the finite number of particles. The equilibrium 
temperature in all cases is T ~  1.6175 and the initial one is To = 1.8570; 

! | | | 

-22800 :", t 

-23200 

-23600 

-24000 ' " " ' 
0 100 200 300 400 5()0 

t/h 

Fig. 1. Boltzmann H function vs. time t/h. The density is p - 0 . 4 5  and the number of 
particles is N = 4000. We used the definition of H(t)  given in Eq. (11 ). In all cases the initial 
velocities of the particles have the same values chosen from a Maxwellian distribution. The 
initial total potential energy is zero in all cases and the initial positions of the particles are 
on an fee lattice (dashed line), and in the other five cases (continuous lines) the initial posi- 
tions are randomly displaced from the fee sites. The horizontal lines are the theoretical values 
H,eo(t=O) and H,eo(t~ oo), see Eq. (5), using the corresponding temperatures To=  1.8570 
and T =  1.6175 obtained from the simulation. 



-1450 

-1470 

Romero-Rochin and Gonz,~lez-Tovar 

-1490 

-1510 

-1530 (a) 

740 

gh 

-1550 I , i .... i 
0 100 200 300 400 500 

-44800 | i ! | i 

I 

-45200 

-45600 

-46000 

-46400 (b) 

-46800 . i a J i 
0 100 200 300 400 500 

t/h 

Fig. 2. Boltzmann H function vs. time t/h. The density is p = 0 . 4 5  and the number  of 
particles is (a) N = 2 5 6  and (b) N = 6 9 1 2 .  We used the definition of H(t) given in Eq. (11). 
In the two figures the initial state is an fcc lattice with zero potential  energy and with the 
velocities of the particles chosen from a Maxwellian distribution. 
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Fig. 3. Total energy per particle E, kinetic energy per particle K, and potential energy per 
particle U vs. time t/h. The density is p =0.45 and the number of particles is (a) N--256,  
(b) N=4000,  and (c) N=6912 ,  corresponding to the cases of Figs. 2a, 1, and 2b. The kinetic 
and the pqtential energies are directly calculated from the state of the system while the total 
energy is the sum of the former two. 
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Fig. 3. (Continued) 

with these values and the density p = 0.45, we can evaluate the theoretical 
expression of H given by Eq. (5), and we find Hteo(t=O)=-23935 and 
H, eo(t--+ oo),~-23108. The discrepancy between the theoretical difference 
H~eo(t ~ c~)-H,~o(t =0)  and that obtained from the simulation is only 
about 1.0 %. 

In Figs. 2a and 2b, the increase of H(t) is also shown for a system of 
N particles with N = 256 and 6912, respectively. In both cases, the density 
is also p =0.45. The initial state again corresponds to an fcc lattice with 
zero potential energy and with the velocities of the particles distributed/L 
la Maxwell with temperatures T0(256) = 1.9544 and To(6912) = 3.1292. The 
equilibrium temperatures are T(256) ~ 1.7002 and T(6912) ~ 2.7273. In 
Figs. 3a to 3c, it is shown the kinetic energy per particle, potential energy 
per particle and total energy per particle as a function of time, corresponding 
to the cases of Figs. 2a, 1 and 2b, respectively. One clearly sees how the 
potential energy is a considerable fraction of the total energy. Therefore, 
one should not expect Boltzmann equation to apply and the "violation" of 
the H Theorem should accordingly not be a surprise. On the other hand, 
as also pointed out by Jaynes, <3) if the system starts from an arbitrary state 
far from equilibrium, H is expected to decrease. For instance, for an initial 
fcc lattice with the particle velocities uniformly distributed H decreases, as 
shown in Fig. 4. 
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Fig. 4. Boltzmann H function vs. time t/h. In both cases the density is p -  0.45, the number  
of particles is N = 4000 and the total energy per particle is E = 2.785. The initial state is an 
fcc lattice with the velocities of the particles (a) Maxwell-distributed and (b) uniformly 
distributed with a given magnitude. 

One important aspect must be realized from Figs. 1 and 2: It turns out 
that H is negative. As it is known, H is defined up to an additive constant 
that can be shifted by changing the units used. However, since H(t =0 )  is 
negative, dividing the value of H(t) by H(0) would result in an inversion 
of the curves. Namely, H(t)/H(O) would appear to be decreasing as a func- 
tion of time, analogously to the behavior of the function calculated by 
Levesque and Verlet. t~ 

As a passing by comment, we stress one of the remarkable properties 
of the present reversible MD simulation: In Figs. 3a to 3c, the total energy 
was calculated as the sum of the kinetic plus the potential energies. In the 
scale of the figures the total energy appears as a constant; in fact, it does 
fluctuate, a consequence of the discretization of Newton's equations, but 
this fluctuation is at least an order of magnitiade less than the actual fluc- 
tuations, ~ N  ~/2, of the kinetic and potential energies. And more impor- 
tantly, the total energy does not show any systematic drift. 

Levesque and Verlet ~z~ explicity showed that if all the velocities are 
reversed at a given time tr, the system returns, exactly, to its initial state 
at a time 2tr. 
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3. GRAD LIMIT 

Again, the apparent failure of the H Theorem only reflects the fact that 
Boltzmann equation should not be applicable. This is the more evident for 
the high density (p =0.45) used in the MD calculations of Figs. (1) to (4). 
As it is known, Boltzmann equation is rigorously valid in the so-called 
Grad limit, in which the ratio of  the mean-free-path to macroscopic dimen- 
sions is held f ixed while the gas becomes more and more rarified. ~4) This 
limit has the result that while the gas becomes ideal (i.e. p V =  NkT) ,  the 
effect of the collisions in the evolution remains finite. The latter is given by 
Boltzmann equation. As the ideal gas is approached the potential energy 
must become negligible. In the original argument given by Grad t4), this 
limit is obtained by 

No "2 --constant while N ~ oo and a ~ 0 (12) 

with a the size of the atoms. This procedure, however, is not easily 
amenable for calculational purposes since the "natural" value of a is 1. One 
can use instead the equivalent limit of raryfing the gas by letting the 
reduced density vanish as, 

N p  2 = constant while N ~ oo and p -~ 0 (13) 

Since the mean-free-path 2 ~ l/p, in reduced units, one can verify that the 
above limit leaves 2/L=constant ,  where L is the size of the system 
(L = Vl/3). 

In order to explore this limit we performed a sequence of MD simula- 
tions, obeying Grad requirement Np 2 =constant,  for N =  864, 2048, 4000 
and 6912. This is summarized in Table I. Since one of the main assump- 
tions of Boltzmann equation is the condition of binary collisions only, we 
searched for small enough densities such that, on the one hand, triple colli- 
sions and higher were negligible but, on the other, the mean-free-path 
remained smaller than the size L of the box of the MD simulation. This is 
an important technical aspect since one can arbitrarily (though numerically 
costly[) lower the density for any given number of particles, leading to a 
situation where the mean-free-path is larger than the size of the system. The 
periodic boundary conditions of the MD simulation can then produce 
dangerous spurious effects. 

In the sequence of simulations summarized in Table I, we found that 
the duration of the binary collisions, in equilibrium, were aproximately 30 
MD time-steps, while one can see from Table I that the time between colli- 
sions increases as the density is lowered. We also found in all the runs an 
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Table I. Grad Sequence of M D Simulations, 
Obeying Np 2 = constant" 

| n  i i i i i  i 

N p L r T 

864 0.028284 31.26 507 3.1134 
2048 0.018371 48.13 778 3.1189 
4000 0.013145 67.26 1083 3.1219 
6912 0.010000 88.42 1424 3.1236 

i i  i i i  i i i 

o N, number of particles, p, density. L, size of the the 
system ( i .e .V.= L3). z, mean time between collisions, in 
MD steps. T, temperature. Note that the ratio r/L and the 
temperature tend to their corresponding constant values in 
Grad limit. 

approximate 1:25 ratio of triple to binary collisions per particle per MD 
time-step. 

Figs. 5 and 6 help to visualize Grad limit. Fig. 5 shows the distribu- 
tions of kinetic energy per particle. In the limit, the distribution approaches 
a delta function distribution that should coincide with the ideal-gas total 
energy per particle. The counterpart behavior can be observed in Fig. 6 
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Fig. 5. Distributions of kinetic energy K per particle following Grad limit, N--.  ~ ,  p ~ 0 
with Np2=cons tan t .  (a) N = 8 6 4 ,  p=0.028284;  (b) N = 2 0 4 8 ,  p=0.018371 '  (c) N = 4 0 0 0 ,  
p=0.013145;  (d) N---6912, p =0.01000. In all cases the total energy per particle is the same 
and is plotted as (e). 
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where we show the distribution of number of binary collisions per time step 
per particle scaled with the size L of the system. That is, in Grad limit, the 
mean time between collisions r divided by the length L of the system 
should tend to a constant value" 

r 2 1 
- ~ , , ~ ~  (14) 

L v(T)L v(T) 

where v(T) is the mean velocity of the particles, a function of the tem- 
perature. In Grad limit v(T) is the ideal-gas mean velocity. In Fig. 6, we 
see that, indeed, the distributions of binary collisions are approaching a 
delta-function distribution centered in the limiting value of L/r. In other 
words, Figs. 5 and 6 illustrate how, in Grad limit, while the gas becomes 
ideal the effect of the collisions remains. From an operational point of view 
and from the present results, we can say with certain confidence that for 
N =  6912 and p =0.01 the system is close enough to Grad limit, so that 
some other issues of Boltzmann equation may be numerically studied. 
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Fig. 6. Grad sequence of distributions of binary collisions n per particle per MD time step 
scaled with the size of the system. The variable n is the inverse of r/L, the mean time between 
collisions divided by the size of the system. (a) N=864, p=0.028284; (b) N=2048, 
p=0.018371; (c) N=4000, p=0.013145; (d) N=6912, p =0.01000. 
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Fig. 7. Distributions of kinetic energy K per particle following the thermodynamic limit, 
N--, ~ ,  V--, ~ with p=0.01.  (a) N=864;  (b) N=2048;  (c) N=4000;  (d) N=6912. 

For purposes of comparison we show in Fig. 7 a sequence of MD 
simulations following the themodynamic limit, N ~ c~, V ~ oo with N / V  
constant, for N/V=O.O1.  Besides illustrating the role of fluctuations in a 
finite system, Figs. 5 and 7 show the difference between the two limits. 

4. FINAL R E M A R K S  

As we have seen, the increase of Boltzmann H function is both due to 
the particular initial condition used and to the fact that the potential 
energy cannot be neglected. Both aspects are of considerable importance in 
actual numerical simulations. On the one hand, from a practical point of 
view, it is always much easier to initially place the particles on a lattice and 
then let them evolve, than to locate them in "random" sites but avoiding 
highly improbable states with particles very near to others. For studies of 
the properties of the equilibrium state, the initial condition is quite irrele- 
vant, but certainly not so for analyzing states out of equilibrium. On the 
other hand, the potential energy is what makes the evolution possible. In 
this regard, it is interesting to point out that for a system of hard spheres, 
Jaynes' result should not be relevant since the potential energy is always 
zero and, therefore, for the initial state used throughout in this article, the 
corresponding H function should remain constant. We recall, however, that 
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the latter property does not imply that the system was initially in thermal 
equilibrium: H is not (minus) the entropy. For the hard-spheres case, H 
does not take into account the non-thermal excluded volume contribution. 
As we have stressed here, the apparent violation of the H Theorem is just 
an indication that Boltzmann equation is only valid in Grad limit and that 
in reality, and in numerical simulations, the systems considered are nor- 
mally far from that extreme state. 

As a matter of conclusion of this article, we present Fig. 8 where 
Boltzmann H function is plotted for a system of N = 6912 particles and for 
five different densities. In all cases, the system starts from exactly the same 
initial state, with zero potential energy and with the same values of the 
velocities Maxwell-distributed (T0=3.1292). Two features we want to 
highlight. First, one clearly sees that the increase of H is more pronounced 
as the density is increased, as it should, according to Jaynes' argument. 
However, and secondly, one can also observe that a "shoulder" seems to be 
developing before the system finally relaxes to equilibrium. This hump 
appears earlier the higher the density. This effect should also be more 
noticeable as the number of particles increases (see also Figs. 1 and 2). This 
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Fig. 8. Boltzmann Hc function vs. time t/h, for a system of N = 6912 particles and for 
different densities. All cases start with the same initial state. (a) p=0.01;  (b) p=0.15;  
(c) p =0.20; (d) p =0.30; (e) p =0.45. Since H depends on the density, we have here plotted 
Hc = ( H - N  In p)/N, so that the initial value of Hc is exactly the same for all cases. 
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phenomenon is reminiscent of a recent discussion of the "slippage" of initial 
conditions in reduced dynamics of systems coupled to heat-baths, t8) That 
is, it appears that although, strictly speaking, H(t) increases, it does so only 
for a very short period of time, during which, it "slips" towards an effective 
initial condition from which it actually decreases! The complete elucidation 
of this feature is certainly out of the scope of this article and will be dis- 
cussed elsewhere, 19) but we bring it here as a further example of the type 
of questions that can be addressed with reversible molecular dynamics. 
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